
11/9/2018 DSWorkshop_Day_1

http://localhost:8888/notebooks/Downloads/DSWorkshop_Day_1.ipynb# 1/50

What is Data Science?
Data science – discovery of data insight

Data science is a multidisciplinary blend of data inference, algorithm development, and technology in order to
solve analytically complex problems.

This aspect of data science is all about uncovering findings from data. Diving in at a granular level to mine and
understand complex behaviors, trends, and inferences.

It's about surfacing hidden insight that can help enable companies to make smarter business decisions.

Applications of Data Science
Recommender Systems

Netflix data mines movie viewing patterns to understand what drives user interest, and uses that to make
decisions on which Netflix original series to produce.

Online Retailers such as Amazon, Flipkart identifies what are major customer segments within its base and the
unique shopping behaviors within those segments, which helps to guide messaging to different market
audiences.

Fraud and Risk Detection

Customer sentiment analysis

The analysts can perform the brand-customer sentiment analysis by data received from social networks and
online services feedbacks.

Social media sources are readily available. That is why it is much easier to implement analytics on social
platforms.

Sentiment analytics uses language processing to track words bearing a positive or negative attitude of a
customer.

Sports to analyze player movements and team trends and make better coaching decisions.

Digital Advertisements (Targeted Advertising and retargeting)

The reason why digital ads have been able to get a lot higher CTR than traditional advertisements. They can be
targeted based on user’s past behaviour.

This is the reason why you see ads of analytics trainings while your friend sees ad of apparels in the same
place at the same time.

Image Recognition

Speech Recognition

Price Comparison Websites

At a basic level, these websites are being driven by lots and lots of data which is fetched using APIs and RSS
Feeds.

11/9/2018 DSWorkshop_Day_1

http://localhost:8888/notebooks/Downloads/DSWorkshop_Day_1.ipynb# 2/50

Gaming

EA Sports, Zynga, Sony, Nintendo, Activision-Blizzard have led gaming experience to the next level using data
science. Games are now designed using machine learning algorithms which improve / upgrade themselves as
the player moves up to a higher level.

In motion gaming also, your opponent (computer) analyzes your previous moves and accordingly shapes up its
game.

Airline Route Planning

Ride Sharing Services(such as Uber, Ola, Lyft) use Data Science

Self Driving Cars

Recommending new connections on Linkedin, Suggesting new people to follow on twitter.

Delivery logistics

Logistic companies like DHL, FedEx, UPS have used data science to improve their operational efficiency. Using
data science, these companies have discovered the best routes to ship, the best suited time to deliver, the best
mode of transport to choose thus leading to cost efficiency, and many more to mention.

Furthermore, the data that these companies generate using the GPS installed, provides them a lots of
possibilities to explore using data science.

Dating websites (Ex. Tinder)

Bioinformatics

Urban Planning to solve traffic issues

Astrophysics

Public Health most likely emergency cases so as to provide better medical equipment and facility.

11/9/2018 DSWorkshop_Day_1

http://localhost:8888/notebooks/Downloads/DSWorkshop_Day_1.ipynb# 3/50

Python Libraries for Data Science
Many popular Python toolboxes/libraries:

NumPy SciPy Pandas SciKit-Learn

Visualization libraries:

matplotlib ggplot

 and many more …

Python Libraries for Data Science

NumPy:
Numpy is a library that provides functions that are especially useful when you have to work with large arrays
and matrices of numeric data, like doing matrix matrix multiplications. Also, Numpy is battle tested and
optimized so that it runs fast, much faster than if you were working with Python lists directly.

provides vectorization of mathematical operations on arrays and matrices which significantly improves the
performance

many other python libraries are built on NumPy

SciPy:
collection of algorithms for linear algebra, differential equations, numerical integration, optimization, statistics
and more

part of SciPy Stack

built on NumPy

Pandas:
adds data structures and tools designed to work with table-like data (similar to Series and Data Frames in R)

provides tools for data manipulation: reshaping, merging, sorting, slicing, aggregation etc.

allows handling missing data

Handling data in a way that suits analysis

Scikit-Learn:
provides machine learning algorithms: classification, regression, clustering, model validation etc.

built on NumPy, SciPy and matplotlib

Matplotlib:

11/9/2018 DSWorkshop_Day_1

http://localhost:8888/notebooks/Downloads/DSWorkshop_Day_1.ipynb# 4/50

python 2D plotting library which produces publication quality figures in a variety of hard-copy formats

a set of functionalities similar to those of MATLAB

line plots, scatter plots, barcharts, histograms, pie charts etc.

relatively low-level; some effort needed to create advanced visualization

Let's Start with NumPy....
NumPy already comes installed with the Anaconda stack or you can install it using commands: pip install
numpy (or) conda install numpy

In [1]:

NumPy arrays:

NumPy arrays are different from Python lists. NumPy arrays can contain data of a single data type unlike lists in
python. For eg. A python list can contain float as well as integer values at the same time

In [2]:

But for the same list if we create a numpy array, it would look like this:

In [3]:

The data type of all the elements is upcasted to float.

You can explicitly set the data type of the resulting array by using the dtype keyword

In [4]:

Out[1]:

'1.14.0'

[0, 1.2, 4, 3.43]

[0. 1.2 4. 3.43]

Out[4]:

array([1., 2., 3., 4.], dtype=float32)

import numpy as np #importing numpy and renaming as np for local use and ease
np.__version__ #check numpy version

list = [0, 1.2 , 4, 3.43]
print(list)

print(np.array(list))

np.array([1,2,3,4], dtype='float32')

11/9/2018 DSWorkshop_Day_1

http://localhost:8888/notebooks/Downloads/DSWorkshop_Day_1.ipynb# 5/50

Creating NumPy arrays from scratch:

In [5]:

In [6]:

In [7]:

In [8]:

In [9]:

Out[5]:

array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0])

Out[6]:

array([[1., 1., 1., 1., 1.],
 [1., 1., 1., 1., 1.],
 [1., 1., 1., 1., 1.]])

Out[7]:

array([[3.14, 3.14, 3.14, 3.14, 3.14],
 [3.14, 3.14, 3.14, 3.14, 3.14],
 [3.14, 3.14, 3.14, 3.14, 3.14]])

Out[8]:

array([0, 2, 4, 6, 8, 10, 12, 14, 16, 18])

Out[9]:

array([0. , 0.25, 0.5 , 0.75, 1.])

#Create a length-10 integer array filled with zeros
np.zeros(10,dtype=int)

#Create a 3x5 floating point array filled with 1s
np.ones((3,5),dtype=float)

#Create a 3x5 array filled with 3.14
np.full((3, 5), 3.14)

Create an array filled with a linear sequence
Starting at 0, ending at 20, stepping by 2
(this is similar to the built-in range() function)
np.arange(0, 20, 2)

Create an array of five values evenly spaced between 0 and 1
np.linspace(0, 1, 5)

11/9/2018 DSWorkshop_Day_1

http://localhost:8888/notebooks/Downloads/DSWorkshop_Day_1.ipynb# 6/50

In [10]:

In [11]:

In [12]:

Numpy Standard Data Types:
Data type Description

bool_ Boolean (True or False) stored as a byte

int_ Default integer type (same as C long ; normally either int64 or int32)

intc Identical to C int (normally int32 or int64)

intp Integer used for indexing (same as C ssize_t ; normally either int32 or int64)

int8 Byte (-128 to 127)

int16 Integer (-32768 to 32767)

int32 Integer (-2147483648 to 2147483647)

int64 Integer (-9223372036854775808 to 9223372036854775807)

uint8 Unsigned integer (0 to 255)

uint16 Unsigned integer (0 to 65535)

uint32 Unsigned integer (0 to 4294967295)

uint64 Unsigned integer (0 to 18446744073709551615)

float_ Shorthand for float64 .

float16 Half precision float: sign bit, 5 bits exponent, 10 bits mantissa

Out[10]:

array([[0.12212472, 0.82517557, 0.54541222],
 [0.90527964, 0.29078456, 0.17803106],
 [0.66933912, 0.20921547, 0.61450299]])

Out[11]:

array([[9, 2, 7],
 [1, 6, 3],
 [7, 9, 5]])

Out[12]:

array([[1., 0., 0.],
 [0., 1., 0.],
 [0., 0., 1.]])

Create a 3x3 array of uniformly distributed
random values between 0 and 1
np.random.random((3, 3))

Create a 3x3 array of random integers in the interval [0, 10)
np.random.randint(0, 10, (3, 3))

Create a 3x3 identity matrix
np.eye(3)

11/9/2018 DSWorkshop_Day_1

http://localhost:8888/notebooks/Downloads/DSWorkshop_Day_1.ipynb# 7/50

Data type Description

float32 Single precision float: sign bit, 8 bits exponent, 23 bits mantissa

float64 Double precision float: sign bit, 11 bits exponent, 52 bits mantissa

complex_ Shorthand for complex128 .

complex64 Complex number, represented by two 32-bit floats

complex128 Complex number, represented by two 64-bit floats

NumPy array attributes:
In [13]:

In [14]:

Array indexing:

Accessing single elements:
If you are familiar with Python's standard list indexing, indexing in NumPy will feel quite familiar. In a one-
dimensional array, the value (counting from zero) can be accessed by specifying the desired index in square
brackets, just as with Python lists:

𝑖
𝑡ℎ

In [15]:

x3 ndim: 3
x3 shape: (3, 4, 5)
x3 size: 60
dtype: int32

[5 0 3 3 7 9]
5
7
9
7

import numpy as np
np.random.seed(0) # seed for reproducibility

x1 = np.random.randint(10, size=6) # One-dimensional array
x2 = np.random.randint(10, size=(3, 4)) # Two-dimensional array
x3 = np.random.randint(10, size=(3, 4, 5)) # Three-dimensional array

print("x3 ndim: ", x3.ndim)
print("x3 shape:", x3.shape)
print("x3 size: ", x3.size)
print("dtype:", x3.dtype)

print(x1)
print(x1[0])
print(x1[4])
print(x1[-1]) #prints the last element
print(x1[-2]) #2nd last element

11/9/2018 DSWorkshop_Day_1

http://localhost:8888/notebooks/Downloads/DSWorkshop_Day_1.ipynb# 8/50

In [16]:

In [17]:

Array Slicing:
Just as we can use square brackets to access individual array elements, we can also use them to access
subarrays with the slice notation, marked by the colon (:) character. The NumPy slicing syntax follows that of
the standard Python list; to access a slice of an array x, use this: x[start:stop:step] If any of these are
unspecified, they default to the values start=0, stop=size of dimension, step=1. We'll take a look at accessing
sub-arrays in one dimension and in multiple dimensions.

In [18]:

In [19]:

[[3 5 2 4]
 [7 6 8 8]
 [1 6 7 7]]
3
1
7
[[12 5 2 4]
 [7 6 8 8]
 [1 6 7 7]]

Out[17]:

array([3, 0, 3, 3, 7, 9])

Out[18]:

array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

Out[19]:

array([0, 1, 2, 3, 4])

print(x2)
print(x2[0, 0])
print(x2[2, 0])
print(x2[2, -1])
x2[0, 0] = 12
print(x2)

x1[0] = 3.14159 # this will be truncated! Guess why?
x1

x = np.arange(10)
x

x[:5] # first five elements

11/9/2018 DSWorkshop_Day_1

http://localhost:8888/notebooks/Downloads/DSWorkshop_Day_1.ipynb# 9/50

In [20]:

In [21]:

In [22]:

In [23]:

In [24]:

In [25]:

Reshaping Arrays:
Another useful type of operation is reshaping of arrays. The most flexible way of doing this is with the reshape
method. For example, if you want to put the numbers 1 through 9 in a 3×3 3×3 grid, you can do the following:

Out[20]:

array([4, 5, 6])

Out[21]:

array([0, 2, 4, 6, 8])

Out[22]:

array([1, 3, 5, 7, 9])

Out[23]:

array([9, 8, 7, 6, 5, 4, 3, 2, 1, 0])

Out[24]:

array([5, 3, 1])

[[12 5]
 [7 6]]

x[4:7] # middle sub-array

x[::2] # every other element

x[1::2] # every other element, starting at index 1

x[::-1] # all elements, reversed

x[5::-2] # reversed every other from index 5

x2_sub = x2[:2, :2]
print(x2_sub)

11/9/2018 DSWorkshop_Day_1

http://localhost:8888/notebooks/Downloads/DSWorkshop_Day_1.ipynb# 10/50

In [26]:

In [27]:

In [28]:

Array Concatenation and Splitting
All of the preceding routines worked on single arrays. It's also possible to combine multiple arrays into one, and
to conversely split a single array into multiple arrays. We'll take a look at those operations here.

Concatenation of arrays
Concatenation, or joining of two arrays in NumPy, is primarily accomplished using the routines
np.concatenate , np.vstack , and np.hstack . np.concatenate takes a tuple or list of arrays as its first

argument, as we can see here:

In [29]:

[[1 2 3]
 [4 5 6]
 [7 8 9]]

Out[27]:

array([[1, 2, 3]])

Out[28]:

array([[1],
 [2],
 [3]])

Out[29]:

array([1, 2, 3, 3, 2, 1])

grid = np.arange(1, 10).reshape((3, 3))
print(grid)

x = np.array([1, 2, 3])

row vector via reshape
x.reshape((1, 3))

x.reshape((3,1))

x = np.array([1,2,3])
y = np.array([3,2,1])
np.concatenate([x,y])

11/9/2018 DSWorkshop_Day_1

http://localhost:8888/notebooks/Downloads/DSWorkshop_Day_1.ipynb# 11/50

In [30]:

Splitting of arrays
The opposite of concatenation is splitting, which is implemented by the functions np.split , np.hsplit , and
np.vsplit . For each of these, we can pass a list of indices giving the split points:

In [31]:

Notice that N* split-points, leads to *N + 1 subarrays. The related functions np.hsplit and np.vsplit are
similar:

In [32]:

In [33]:

[[1 2 3]
 [4 5 6]
 [1 2 3]
 [4 5 6]]

[[1 2 3 1 2 3]
 [4 5 6 4 5 6]]

[1 2 3] [99 99] [3 2 1]

Out[32]:

array([[0, 1, 2, 3],
 [4, 5, 6, 7],
 [8, 9, 10, 11],
 [12, 13, 14, 15]])

[[0 1 2 3]
 [4 5 6 7]]
[[8 9 10 11]
 [12 13 14 15]]

grid = np.array([[1,2,3],
 [4,5,6]])
print(np.concatenate([grid,grid]))
print()
print(np.concatenate([grid,grid],axis=1))

x = [1, 2, 3, 99, 99, 3, 2, 1]
x1, x2, x3 = np.split(x, [3, 5])
print(x1, x2, x3)

grid = np.arange(16).reshape((4, 4))
grid

upper, lower = np.vsplit(grid, [2])
print(upper)
print(lower)

11/9/2018 DSWorkshop_Day_1

http://localhost:8888/notebooks/Downloads/DSWorkshop_Day_1.ipynb# 12/50

In [34]:

Exploring NumPy's UFuncs
Ufuncs exist in two flavors: unary ufuncs, which operate on a single input, and binary ufuncs, which operate on
two inputs. We'll see examples of both these types of functions here.

Array arithmetic
NumPy's ufuncs feel very natural to use because they make use of Python's native arithmetic operators. The
standard addition, subtraction, multiplication, and division can all be used:

In [35]:

There is also a unary ufunc for negation, and a ** operator for exponentiation, and a % operator for modulus:

In [36]:

In addition, these can be strung together however you wish, and the standard order of operations is respected:

[[0 1]
 [4 5]
 [8 9]
 [12 13]]
[[2 3]
 [6 7]
 [10 11]
 [14 15]]

x = [0 1 2 3]
x + 5 = [5 6 7 8]
x - 5 = [-5 -4 -3 -2]
x * 2 = [0 2 4 6]
x / 2 = [0. 0.5 1. 1.5]
x // 2 = [0 0 1 1]

-x = [0 -1 -2 -3]
x ** 2 = [0 1 4 9]
x % 2 = [0 1 0 1]

left, right = np.hsplit(grid, [2])
print(left)
print(right)

x = np.arange(4)
print("x =", x)
print("x + 5 =", x + 5)
print("x - 5 =", x - 5)
print("x * 2 =", x * 2)
print("x / 2 =", x / 2)
print("x // 2 =", x // 2) # floor division

print("-x = ", -x)
print("x ** 2 = ", x ** 2)
print("x % 2 = ", x % 2)

11/9/2018 DSWorkshop_Day_1

http://localhost:8888/notebooks/Downloads/DSWorkshop_Day_1.ipynb# 13/50

In [37]:

Each of these arithmetic operations are simply convenient wrappers around specific functions built into NumPy;
for example, the + operator is a wrapper for the add function:

In [38]:

The following table lists the arithmetic operators implemented in NumPy:

Operator Equivalent ufunc Description

+ np.add Addition (e.g., 1 + 1 = 2)

- np.subtract Subtraction (e.g., 3 - 2 = 1)

- np.negative Unary negation (e.g., -2)

* np.multiply Multiplication (e.g., 2 * 3 = 6)

/ np.divide Division (e.g., 3 / 2 = 1.5)

// np.floor_divide Floor division (e.g., 3 // 2 = 1)

** np.power Exponentiation (e.g., 2 ** 3 = 8)

% np.mod Modulus/remainder (e.g., 9 % 4 = 1)

Absolute value
Just as NumPy understands Python's built-in arithmetic operators, it also understands Python's built-in absolute
value function:

In [39]:

In [40]:

Out[37]:

array([-1. , -2.25, -4. , -6.25])

Out[38]:

array([2, 3, 4, 5])

Out[39]:

array([2, 1, 0, 1, 2])

Out[40]:

array([2, 1, 0, 1, 2])

-(0.5*x + 1) ** 2

np.add(x, 2)

x = np.array([-2, -1, 0, 1, 2])
abs(x)

np.abs(x) #You can also use np.absolute(x)

11/9/2018 DSWorkshop_Day_1

http://localhost:8888/notebooks/Downloads/DSWorkshop_Day_1.ipynb# 14/50

This ufunc can also handle complex data, in which the absolute value returns the magnitude:

In [41]:

Trigonometric functions
NumPy provides a large number of useful ufuncs, and some of the most useful for the data scientist are the
trigonometric functions. We'll start by defining an array of angles:

In [42]:

Now we can compute some trigonometric functions on these values:

In [43]:

Exponents and logarithms
Another common type of operation available in a NumPy ufunc are the exponentials:

In [44]:

The inverse of the exponentials, the logarithms, are also available. The basic np.log gives the natural
logarithm; if you prefer to compute the base-2 logarithm or the base-10 logarithm, these are available as well:

Out[41]:

array([5., 5., 2., 1.])

theta = [0. 1.57079633 3.14159265]
sin(theta) = [0.0000000e+00 1.0000000e+00 1.2246468e-16]
cos(theta) = [1.000000e+00 6.123234e-17 -1.000000e+00]
tan(theta) = [0.00000000e+00 1.63312394e+16 -1.22464680e-16]

x = [1, 2, 3]
e^x = [2.71828183 7.3890561 20.08553692]
2^x = [2. 4. 8.]
3^x = [3 9 27]

x = np.array([3 - 4j, 4 - 3j, 2 + 0j, 0 + 1j])
np.abs(x)

theta = np.linspace(0, np.pi, 3) #Divides the range of 0 to pi into 2 equal parts giving 3

print("theta = ", theta)
print("sin(theta) = ", np.sin(theta))
print("cos(theta) = ", np.cos(theta))
print("tan(theta) = ", np.tan(theta))

x = [1, 2, 3]
print("x =", x)
print("e^x =", np.exp(x))
print("2^x =", np.exp2(x))
print("3^x =", np.power(3, x))

11/9/2018 DSWorkshop_Day_1

http://localhost:8888/notebooks/Downloads/DSWorkshop_Day_1.ipynb# 15/50

In [45]:

Aggregates
For binary ufuncs, there are some interesting aggregates that can be computed directly from the object. For
example, if we'd like to reduce an array with a particular operation, we can use the reduce method of any
ufunc. A reduce repeatedly applies a given operation to the elements of an array until only a single result
remains.

For example, calling reduce on the add ufunc returns the sum of all elements in the array:

In [46]:

In [47]:

If we'd like to store all the intermediate results of the computation, we can instead use accumulate :

In [48]:

In [49]:

x = [1, 2, 4, 10]
ln(x) = [0. 0.69314718 1.38629436 2.30258509]
log2(x) = [0. 1. 2. 3.32192809]
log10(x) = [0. 0.30103 0.60205999 1.]

Out[46]:

15

Out[47]:

120

Out[48]:

array([1, 3, 6, 10, 15], dtype=int32)

Out[49]:

array([1, 2, 6, 24, 120], dtype=int32)

x = [1, 2, 4, 10]
print("x =", x)
print("ln(x) =", np.log(x))
print("log2(x) =", np.log2(x))
print("log10(x) =", np.log10(x))

x = np.arange(1, 6)
np.add.reduce(x)

np.multiply.reduce(x)

np.add.accumulate(x)

np.multiply.accumulate(x)

11/9/2018 DSWorkshop_Day_1

http://localhost:8888/notebooks/Downloads/DSWorkshop_Day_1.ipynb# 16/50

Aggregations: Min, Max, and Everything In
Between
Often when faced with a large amount of data, a first step is to compute summary statistics for the data in
question. Perhaps the most common summary statistics are the mean and standard deviation, which allow you
to summarize the "typical" values in a dataset, but other aggregates are useful as well (the sum, product,
median, minimum and maximum, quantiles, etc.).

NumPy has fast built-in aggregation functions for working on arrays; we'll discuss and demonstrate some of
them here.

Summing the Values in an Array
As a quick example, consider computing the sum of all values in an array. Python itself can do this using the
built-in sum function wheras numpy has its own np.sum() function. See the difference in time.

In [50]:

Minimum and Maximum
Similarly, Python has built-in min and max functions, used to find the minimum value and maximum value of
any given array:

In [51]:

Multi dimensional aggregates
One common type of aggregation operation is an aggregate along a row or column. Say you have some data
stored in a two-dimensional array:

274 ms ± 19.3 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
1.93 ms ± 112 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

114 ms ± 1.93 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)
772 µs ± 26.3 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

big_array = np.random.rand(1000000)
%timeit sum(big_array)
%timeit np.sum(big_array)

%timeit min(big_array)
%timeit np.min(big_array)

11/9/2018 DSWorkshop_Day_1

http://localhost:8888/notebooks/Downloads/DSWorkshop_Day_1.ipynb# 17/50

In [52]:

Aggregation functions take an additional argument specifying the axis along which the aggregate is computed.
For example, we can find the minimum value within each column by specifying axis=0 :

In [53]:

In [54]:

The way the axis is specified here can be confusing to users coming from other languages. The axis keyword
specifies the dimension of the array that will be collapsed, rather than the dimension that will be returned. So
specifying axis=0 means that the first axis will be collapsed: for two-dimensional arrays, this means that
values within each column will be aggregated.

Other aggregation functions
NumPy provides many other aggregation functions, but we won't discuss them in detail here. Additionally, most
aggregates have a NaN -safe counterpart that computes the result while ignoring missing values, which are
marked by the special IEEE floating-point NaN value. Some of these NaN -safe functions were not added until
NumPy 1.8, so they will not be available in older NumPy versions.

The following table provides a list of useful aggregation functions available in NumPy:

Function Name NaN-safe Version Description

np.sum np.nansum Compute sum of elements

np.prod np.nanprod Compute product of elements

np.mean np.nanmean Compute mean of elements

np.std np.nanstd Compute standard deviation

np.var np.nanvar Compute variance

np.min np.nanmin Find minimum value

[[0.0049466 0.25863997 0.62346477 0.90474173]
 [0.71661557 0.699582 0.80401456 0.60471376]
 [0.43905815 0.73525983 0.3703232 0.57361603]]

Out[52]:

6.734976167538792

Out[53]:

array([0.0049466 , 0.25863997, 0.3703232 , 0.57361603])

Out[54]:

array([0.90474173, 0.80401456, 0.73525983])

M = np.random.random((3, 4))
print(M)
M.sum()

M.min(axis=0)

M.max(axis=1)

11/9/2018 DSWorkshop_Day_1

http://localhost:8888/notebooks/Downloads/DSWorkshop_Day_1.ipynb# 18/50

Function Name NaN-safe Version Description

np.max np.nanmax Find maximum value

np.argmin np.nanargmin Find index of minimum value

np.argmax np.nanargmax Find index of maximum value

np.median np.nanmedian Compute median of elements

np.percentile np.nanpercentile Compute rank-based statistics of elements

np.any N/A Evaluate whether any elements are true

np.all N/A Evaluate whether all elements are true

We will see these aggregates often throughout the rest of the book.

Computation on Arrays: Broadcasting
We saw in the previous section how NumPy's universal functions can be used to vectorize operations and
thereby remove slow Python loops. Another means of vectorizing operations is to use NumPy's broadcasting
functionality. Broadcasting is simply a set of rules for applying binary ufuncs (e.g., addition, subtraction,
multiplication, etc.) on arrays of different sizes.

Introducing Broadcasting
Recall that for arrays of the same size, binary operations are performed on an element-by-element basis:

In [55]:

Broadcasting allows these types of binary operations to be performed on arrays of different sizes–for example,
we can just as easily add a scalar (think of it as a zero-dimensional array) to an array:

In [56]:

We can think of this as an operation that stretches or duplicates the value 5 into the array [5, 5, 5] , and
adds the results. The advantage of NumPy's broadcasting is that this duplication of values does not actually
take place, but it is a useful mental model as we think about broadcasting.

We can similarly extend this to arrays of higher dimension. Observe the result when we add a one-dimensional
array to a two-dimensional array:

Out[55]:

array([5, 6, 7])

Out[56]:

array([5, 6, 7])

a = np.array([0, 1, 2])
b = np.array([5, 5, 5])
a + b

a + 5

11/9/2018 DSWorkshop_Day_1

http://localhost:8888/notebooks/Downloads/DSWorkshop_Day_1.ipynb# 19/50

In [57]:

Here the one-dimensional array a is stretched, or broadcast across the second dimension in order to match
the shape of M .

While these examples are relatively easy to understand, more complicated cases can involve broadcasting of
both arrays. Consider the following example:

In [58]:

In [59]:

Just as before we stretched or broadcasted one value to match the shape of the other, here we've stretched
both a and b to match a common shape, and the result is a two-dimensional array! The geometry of these
examples is visualized in the following figure

Broadcasting Visual

Rules of Broadcasting
Broadcasting in NumPy follows a strict set of rules to determine the interaction between the two arrays:

Rule 1: If the two arrays differ in their number of dimensions, the shape of the one with fewer dimensions is
padded with ones on its leading (left) side.
Rule 2: If the shape of the two arrays does not match in any dimension, the array with shape equal to 1 in
that dimension is stretched to match the other shape.
Rule 3: If in any dimension the sizes disagree and neither is equal to 1, an error is raised.

To make these rules clear, let's consider a few examples in detail.

Broadcasting example 1
Let's look at adding a two-dimensional array to a one-dimensional array:

Out[57]:

array([[1., 2., 3.],
 [1., 2., 3.],
 [1., 2., 3.]])

Out[59]:

array([[0, 1, 2],
 [1, 2, 3],
 [2, 3, 4]])

M = np.ones((3, 3))
M + a

a = np.arange(3)
b = np.arange(3)[:, np.newaxis]

a + b

11/9/2018 DSWorkshop_Day_1

http://localhost:8888/notebooks/Downloads/DSWorkshop_Day_1.ipynb# 20/50

In [60]:

Let's consider an operation on these two arrays. The shape of the arrays are

M.shape = (2, 3)
a.shape = (3,)

We see by rule 1 that the array a has fewer dimensions, so we pad it on the left with ones:

M.shape -> (2, 3)
a.shape -> (1, 3)

By rule 2, we now see that the first dimension disagrees, so we stretch this dimension to match:

M.shape -> (2, 3)
a.shape -> (2, 3)

The shapes match, and we see that the final shape will be (2, 3) :

In [61]:

Broadcasting example 2
Let's take a look at an example where both arrays need to be broadcast:

In [62]:

Again, we'll start by writing out the shape of the arrays:

a.shape = (3, 1)
b.shape = (3,)

Rule 1 says we must pad the shape of b with ones:

a.shape -> (3, 1)
b.shape -> (1, 3)

And rule 2 tells us that we upgrade each of these ones to match the corresponding size of the other array:

a.shape -> (3, 3)
b.shape -> (3, 3)

Out[61]:

array([[1., 2., 3.],
 [1., 2., 3.]])

M = np.ones((2, 3))
a = np.arange(3)

M + a

a = np.arange(3).reshape((3, 1))
b = np.arange(3)

11/9/2018 DSWorkshop_Day_1

http://localhost:8888/notebooks/Downloads/DSWorkshop_Day_1.ipynb# 21/50

Because the result matches, these shapes are compatible. We can see this here:

In [63]:

Boolean operations on NumPy array:
In [64]:

In [65]:

In [66]:

As in the case of arithmetic operators, the comparison operators are implemented as ufuncs in NumPy; for
example, when you write x < 3 , internally NumPy uses np.less(x, 3) . A summary of the comparison
operators and their equivalent ufunc is shown here:

| Operator | Equivalent ufunc || Operator | Equivalent ufunc | |---------------|---------------------||---------------|-------------
--------| | == | np.equal || != | np.not_equal | | < | np.less || <= | np.less_equal | | > | np.greater
|| >= | np.greater_equal |

In [67]:

Out[63]:

array([[0, 1, 2],
 [1, 2, 3],
 [2, 3, 4]])

Out[65]:

array([True, True, False, False, False])

Out[66]:

array([False, False, True, True, True])

Out[67]:

5

a + b

x = np.array([1, 2, 3, 4, 5])

x < 3 # less than

x >= 3 # greater than equal to

how many values less than 6?
np.count_nonzero(x < 6)

11/9/2018 DSWorkshop_Day_1

http://localhost:8888/notebooks/Downloads/DSWorkshop_Day_1.ipynb# 22/50

In [68]:

In [69]:

In [70]:

In [71]:

In [72]:

Sorting NumPy Arrays:
Although Python has built-in sort and sorted functions to work with lists, we won't discuss them here because
NumPy's np.sort function turns out to be much more efficient and useful for our purposes. By default np.sort
uses an �[NlogN] O[Nlog N] , quicksort algorithm, though mergesort and heapsort are also available. For most
applications, the default quicksort is more than sufficient. To return a sorted version of the array without
modifying the input, you can use np.sort:

Out[68]:

5

Out[69]:

array([[5, 0, 3, 3],
 [7, 9, 3, 5],
 [2, 4, 7, 6]])

Out[70]:

array([4, 2, 2])

Out[71]:

True

Out[72]:

True

np.sum(x < 6)

rng = np.random.RandomState(0)
x = rng.randint(10, size=(3, 4))
x

how many values less than 6 in each row?
np.sum(x < 6, axis=1)

are there any values greater than 8?
np.any(x > 8)

are all values less than 10?
np.all(x < 10)

11/9/2018 DSWorkshop_Day_1

http://localhost:8888/notebooks/Downloads/DSWorkshop_Day_1.ipynb# 23/50

In [73]:

In [74]:

And with that we stop our discussion on NumPy. There are many other functions not mentioned above
in the numpy library. We encourage you to look up the documentation for the same.

You can find the documentation here : https://docs.scipy.org/doc/numpy/ (https://docs.scipy.org/doc/numpy/)

Pandas:
Pandas is a newer package built on top of NumPy, and provides an efficient implementation of a DataFrame.
DataFrames are essentially multidimensional arrays with attached row and column labels, and often with
heterogeneous types and/or missing data. As well as offering a convenient storage interface for labeled data,
Pandas implements a number of powerful data operations familiar to users of both database frameworks and
spreadsheet programs.

You can install pandas by:

1. Open cmd
2. Type 'pip install pandas' without quotes and click enter

Once Pandas is installed, you can import it and check the version:

In [75]:

The Pandas Series Object
A Pandas Series is a one-dimensional array of indexed data. It can be created from a list or array as follows:

Out[73]:

array([1, 2, 3, 4, 5])

[1 2 3 4 5]

Out[75]:

'0.22.0'

x = np.array([2, 1, 4, 3, 5])
np.sort(x) #doesn't sort inplace

x.sort() #sorts inplace
print(x)

import pandas as pd #importing pandas and renaming it locally for ease
pd.__version__

https://docs.scipy.org/doc/numpy/

11/9/2018 DSWorkshop_Day_1

http://localhost:8888/notebooks/Downloads/DSWorkshop_Day_1.ipynb# 24/50

In [76]:

As we see in the output, the Series wraps both a sequence of values and a sequence of indices, which we
can access with the values and index attributes. The values are simply a familiar NumPy array:

In [77]:

The index is an array-like object of type pd.Index , which we'll discuss in more detail momentarily.

In [78]:

Like with a NumPy array, data can be accessed by the associated index via the familiar Python square-bracket
notation:

In [79]:

In [80]:

From what we've seen so far, it may look like the Series object is basically interchangeable with a one-
dimensional NumPy array. The essential difference is the presence of the index: while the Numpy Array has an
implicitly defined integer index used to access the values, the Pandas Series has an explicitly defined index

Out[76]:

0 0.25
1 0.50
2 0.75
3 1.00
dtype: float64

Out[77]:

array([0.25, 0.5 , 0.75, 1.])

Out[78]:

RangeIndex(start=0, stop=4, step=1)

Out[79]:

0.5

Out[80]:

1 0.50
2 0.75
dtype: float64

data = pd.Series([0.25, 0.5, 0.75, 1.0])
data

data.values

data.index

data[1]

data[1:3]

11/9/2018 DSWorkshop_Day_1

http://localhost:8888/notebooks/Downloads/DSWorkshop_Day_1.ipynb# 25/50

associated with the values.

This explicit index definition gives the Series object additional capabilities. For example, the index need not
be an integer, but can consist of values of any desired type. For example, if we wish, we can use strings as an
index:

In [81]:

In [82]:

You can think of a Pandas Series a bit like a specialization of a Python dictionary. A dictionary is a structure that
maps arbitrary keys to a set of arbitrary values, and a Series is a structure which maps typed keys to a set of
typed values.

In [83]:

In [84]:

Out[81]:

a 0.25
b 0.50
c 0.75
d 1.00
dtype: float64

Out[82]:

0.5

Out[83]:

California 38332521
Florida 19552860
Illinois 12882135
New York 19651127
Texas 26448193
dtype: int64

Out[84]:

38332521

data = pd.Series([0.25, 0.5, 0.75, 1.0],
 index=['a', 'b', 'c', 'd'])
data

data['b']

population_dict = {'California': 38332521,
 'Texas': 26448193,
 'New York': 19651127,
 'Florida': 19552860,
 'Illinois': 12882135}
population = pd.Series(population_dict)
population

population['California']

11/9/2018 DSWorkshop_Day_1

http://localhost:8888/notebooks/Downloads/DSWorkshop_Day_1.ipynb# 26/50

Constructing Series objects
We've already seen a few ways of constructing a Pandas Series from scratch; all of them are some version
of the following:

>>> pd.Series(data, index=index)

where index is an optional argument, and data can be one of many entities.

For example, data can be a list or NumPy array, in which case index defaults to an integer sequence:

In [85]:

In [86]:

The Pandas DataFrame Object
The next fundamental structure in Pandas is the DataFrame . Like the Series object discussed in the
previous section, the DataFrame can be thought of either as a generalization of a NumPy array, or as a
specialization of a Python dictionary. We'll now take a look at each of these perspectives.

DataFrame as a generalized NumPy array
If a Series is an analog of a one-dimensional array with flexible indices, a DataFrame is an analog of a two-
dimensional array with both flexible row indices and flexible column names. Just as you might think of a two-
dimensional array as an ordered sequence of aligned one-dimensional columns, you can think of a
DataFrame as a sequence of aligned Series objects. Here, by "aligned" we mean that they share the same

index.

To demonstrate this, let's first construct a new Series listing the area of each of the five states discussed in
the previous section:

Out[85]:

0 2
1 4
2 6
dtype: int64

Out[86]:

100 5
200 5
300 5
dtype: int64

pd.Series([2, 4, 6])

pd.Series(5, index=[100, 200, 300])

11/9/2018 DSWorkshop_Day_1

http://localhost:8888/notebooks/Downloads/DSWorkshop_Day_1.ipynb# 27/50

In [87]:

Now that we have this along with the population Series from before, we can use a dictionary to construct a
single two-dimensional object containing this information:

In [88]:

In [89]:

DataFrame as specialized dictionary
Similarly, we can also think of a DataFrame as a specialization of a dictionary. Where a dictionary maps a key
to a value, a DataFrame maps a column name to a Series of column data. For example, asking for the
'area' attribute returns the Series object containing the areas we saw earlier:

Out[87]:

California 423967
Florida 170312
Illinois 149995
New York 141297
Texas 695662
dtype: int64

Out[88]:

area population

California 423967 38332521

Florida 170312 19552860

Illinois 149995 12882135

New York 141297 19651127

Texas 695662 26448193

Indices : Index(['California', 'Florida', 'Illinois', 'New York', 'Texas'],
dtype='object')
Columns : Index(['area', 'population'], dtype='object')

area_dict = {'California': 423967, 'Texas': 695662, 'New York': 141297,
 'Florida': 170312, 'Illinois': 149995}
area = pd.Series(area_dict)
area

states = pd.DataFrame({'population': population,
 'area': area})
states

print("Indices : "+str(states.index))
print("Columns : "+str(states.columns))

11/9/2018 DSWorkshop_Day_1

http://localhost:8888/notebooks/Downloads/DSWorkshop_Day_1.ipynb# 28/50

In [90]:

Notice the potential point of confusion here: in a two-dimesnional NumPy array, data[0] will return the first
row. For a DataFrame , data['col0'] will return the first column. Because of this, it is probably better to
think about DataFrame s as generalized dictionaries rather than generalized arrays, though both ways of
looking at the situation can be useful.

Constructing DataFrame objects
A Pandas DataFrame can be constructed in a variety of ways. Here we'll give several examples.

From a single Series object

A DataFrame is a collection of Series objects, and a single-column DataFrame can be constructed from a
single Series :

In [91]:

From a list of dicts

Any list of dictionaries can be made into a DataFrame . We'll use a simple list comprehension to create some
data:

Out[90]:

California 423967
Florida 170312
Illinois 149995
New York 141297
Texas 695662
Name: area, dtype: int64

Out[91]:

population

California 38332521

Florida 19552860

Illinois 12882135

New York 19651127

Texas 26448193

states['area']

pd.DataFrame(population, columns=['population'])

11/9/2018 DSWorkshop_Day_1

http://localhost:8888/notebooks/Downloads/DSWorkshop_Day_1.ipynb# 29/50

In [92]:

Even if some keys in the dictionary are missing, Pandas will fill them in with NaN (i.e., "not a number") values:

In [93]:

From a dictionary of Series objects

As we saw before, a DataFrame can be constructed from a dictionary of Series objects as well:

In [94]:

From a NumPy structured array

A Pandas DataFrame operates much like a structured array, and can be created directly from one:

Out[92]:

a b

0 0 0

1 1 2

2 2 4

Out[93]:

a b c

0 1.0 2 NaN

1 NaN 3 4.0

Out[94]:

foo bar

a 0.784029 0.000750

b 0.508583 0.444828

c 0.021725 0.465671

data = [{'a': i, 'b': 2 * i}
 for i in range(3)]
pd.DataFrame(data)

pd.DataFrame([{'a': 1, 'b': 2}, {'b': 3, 'c': 4}])

pd.DataFrame(np.random.rand(3, 2),
 columns=['foo', 'bar'],
 index=['a', 'b', 'c'])

11/9/2018 DSWorkshop_Day_1

http://localhost:8888/notebooks/Downloads/DSWorkshop_Day_1.ipynb# 30/50

In [95]:

Series as dictionary
Like a dictionary, the Series object provides a mapping from a collection of keys to a collection of values:

In [96]:

In [97]:

We can also use dictionary-like Python expressions and methods to examine the keys/indices and values:

In [98]:

In [99]:

Out[95]:

A B

0 0 0.0

1 0 0.0

2 0 0.0

Out[96]:

a 0.25
b 0.50
c 0.75
d 1.00
dtype: float64

Out[97]:

0.5

Out[98]:

True

Out[99]:

Index(['a', 'b', 'c', 'd'], dtype='object')

A = np.zeros(3, dtype=[('A', 'i8'), ('B', 'f8')])
pd.DataFrame(A)

import pandas as pd
data = pd.Series([0.25, 0.5, 0.75, 1.0],
 index=['a', 'b', 'c', 'd'])
data

data['b']

'a' in data

data.keys()

11/9/2018 DSWorkshop_Day_1

http://localhost:8888/notebooks/Downloads/DSWorkshop_Day_1.ipynb# 31/50

In [100]:

This easy mutability of the objects is a convenient feature: under the hood, Pandas is making decisions about
memory layout and data copying that might need to take place; the user generally does not need to worry about
these issues.

Series as one-dimensional array
A Series builds on this dictionary-like interface and provides array-style item selection via the same basic
mechanisms as NumPy arrays – that is, slices, masking, and fancy indexing. Examples of these are as follows:

In [101]:

In [102]:

Indexers: loc, iloc, and ix
These slicing and indexing conventions can be a source of confusion. For example, if your Series has an
explicit integer index, an indexing operation such as data[1] will use the explicit indices, while a slicing
operation like data[1:3] will use the implicit Python-style index.

Out[100]:

a 0.25
b 0.50
c 0.75
d 1.00
e 1.25
dtype: float64

Out[101]:

a 0.25
b 0.50
c 0.75
dtype: float64

Out[102]:

a 0.25
b 0.50
dtype: float64

data['e'] = 1.25
data

slicing by explicit index
data['a':'c']

slicing by implicit integer index
data[0:2]

11/9/2018 DSWorkshop_Day_1

http://localhost:8888/notebooks/Downloads/DSWorkshop_Day_1.ipynb# 32/50

In [103]:

In [104]:

In [105]:

Because of this potential confusion in the case of integer indexes, Pandas provides some special indexer
attributes that explicitly expose certain indexing schemes. These are not functional methods, but attributes that
expose a particular slicing interface to the data in the Series .

First, the loc attribute allows indexing and slicing that always references the explicit index:

In [106]:

In [107]:

The iloc attribute allows indexing and slicing that always references the implicit Python-style index:

Out[103]:

1 a
3 b
5 c
dtype: object

Out[104]:

'a'

Out[105]:

3 b
5 c
dtype: object

Out[106]:

'a'

Out[107]:

1 a
3 b
dtype: object

data = pd.Series(['a', 'b', 'c'], index=[1, 3, 5])
data

explicit index when indexing
data[1]

implicit index when slicing
data[1:3]

data.loc[1]

data.loc[1:3]

11/9/2018 DSWorkshop_Day_1

http://localhost:8888/notebooks/Downloads/DSWorkshop_Day_1.ipynb# 33/50

In [108]:

In [109]:

A third indexing attribute, ix , is a hybrid of the two, and for Series objects is equivalent to standard [] -
based indexing. The purpose of the ix indexer will become more apparent in the context of DataFrame
objects, which we will discuss in a moment.

One guiding principle of Python code is that "explicit is better than implicit." The explicit nature of loc and
iloc make them very useful in maintaining clean and readable code; especially in the case of integer indexes,

I recommend using these both to make code easier to read and understand, and to prevent subtle bugs due to
the mixed indexing/slicing convention.

Data Selection in DataFrame
Recall that a DataFrame acts in many ways like a two-dimensional or structured array, and in other ways like a
dictionary of Series structures sharing the same index. These analogies can be helpful to keep in mind as we
explore data selection within this structure.

DataFrame as a dictionary
The first analogy we will consider is the DataFrame as a dictionary of related Series objects. Let's return to
our example of areas and populations of states:

Out[108]:

'b'

Out[109]:

3 b
5 c
dtype: object

data.iloc[1]

data.iloc[1:3]

11/9/2018 DSWorkshop_Day_1

http://localhost:8888/notebooks/Downloads/DSWorkshop_Day_1.ipynb# 34/50

In [110]:

The individual Series that make up the columns of the DataFrame can be accessed via dictionary-style indexing
of the column name:

In [111]:

In [112]:

Out[110]:

area pop

California 423967 38332521

Florida 170312 19552860

Illinois 149995 12882135

New York 141297 19651127

Texas 695662 26448193

Out[111]:

California 423967
Florida 170312
Illinois 149995
New York 141297
Texas 695662
Name: area, dtype: int64

Out[112]:

California 423967
Florida 170312
Illinois 149995
New York 141297
Texas 695662
Name: area, dtype: int64

area = pd.Series({'California': 423967, 'Texas': 695662,
 'New York': 141297, 'Florida': 170312,
 'Illinois': 149995})
pop = pd.Series({'California': 38332521, 'Texas': 26448193,
 'New York': 19651127, 'Florida': 19552860,
 'Illinois': 12882135})
data = pd.DataFrame({'area':area, 'pop':pop})
data

data['area']

data.area

11/9/2018 DSWorkshop_Day_1

http://localhost:8888/notebooks/Downloads/DSWorkshop_Day_1.ipynb# 35/50

In [113]:

Though this is a useful shorthand, keep in mind that it does not work for all cases! For example, if the column
names are not strings, or if the column names conflict with methods of the DataFrame , this attribute-style
access is not possible. For example, the DataFrame has a pop() method, so data.pop will point to this
rather than the "pop" column:

In [114]:

In [115]:

DataFrame as two-dimensional array
As mentioned previously, we can also view the DataFrame as an enhanced two-dimensional array. We can
examine the raw underlying data array using the values attribute:

In [116]:

Out[113]:

True

Out[114]:

False

Out[115]:

area pop density

California 423967 38332521 90.413926

Florida 170312 19552860 114.806121

Illinois 149995 12882135 85.883763

New York 141297 19651127 139.076746

Texas 695662 26448193 38.018740

Out[116]:

array([[4.23967000e+05, 3.83325210e+07, 9.04139261e+01],
 [1.70312000e+05, 1.95528600e+07, 1.14806121e+02],
 [1.49995000e+05, 1.28821350e+07, 8.58837628e+01],
 [1.41297000e+05, 1.96511270e+07, 1.39076746e+02],
 [6.95662000e+05, 2.64481930e+07, 3.80187404e+01]])

#This attribute-style column access actually accesses the exact same object as the dictiona
data.area is data['area']

data.pop is data['pop']

data['density'] = data['pop'] / data['area']
data

data.values

11/9/2018 DSWorkshop_Day_1

http://localhost:8888/notebooks/Downloads/DSWorkshop_Day_1.ipynb# 36/50

In [117]:

When it comes to indexing of DataFrame objects, however, it is clear that the dictionary-style indexing of
columns precludes our ability to simply treat it as a NumPy array. In particular, passing a single index to an
array accesses a row:

In [118]:

In [119]:

Thus for array-style indexing, we need another convention. Here Pandas again uses the loc ,and iloc
indexers mentioned earlier. Using the iloc indexer, we can index the underlying array as if it is a simple
NumPy array (using the implicit Python-style index), but the DataFrame index and column labels are
maintained in the result:

In [120]:

Out[117]:

California Florida Illinois New York Texas

area 4.239670e+05 1.703120e+05 1.499950e+05 1.412970e+05 6.956620e+05

pop 3.833252e+07 1.955286e+07 1.288214e+07 1.965113e+07 2.644819e+07

density 9.041393e+01 1.148061e+02 8.588376e+01 1.390767e+02 3.801874e+01

Out[118]:

array([4.23967000e+05, 3.83325210e+07, 9.04139261e+01])

Out[119]:

California 423967
Florida 170312
Illinois 149995
New York 141297
Texas 695662
Name: area, dtype: int64

Out[120]:

area pop

California 423967 38332521

Florida 170312 19552860

Illinois 149995 12882135

data.T

data.values[0]

passing a single "index" to a DataFrame accesses a column
data['area']

data.iloc[:3, :2]

11/9/2018 DSWorkshop_Day_1

http://localhost:8888/notebooks/Downloads/DSWorkshop_Day_1.ipynb# 37/50

In [121]:

Any of these indexing conventions may also be used to set or modify values; this is done in the standard way
that you might be accustomed to from working with NumPy:

In [122]:

Index alignment in DataFrame
A similar type of alignment takes place for both columns and indices when performing operations on
DataFrame s:

In [123]:

Out[121]:

area pop

California 423967 38332521

Florida 170312 19552860

Illinois 149995 12882135

Out[122]:

area pop density

California 423967 38332521 90.000000

Florida 170312 19552860 114.806121

Illinois 149995 12882135 85.883763

New York 141297 19651127 139.076746

Texas 695662 26448193 38.018740

Out[123]:

A B

0 12 1

1 6 7

data.loc[:'Illinois', :'pop']

data.iloc[0, 2] = 90
data

A = pd.DataFrame(rng.randint(0, 20, (2, 2)),
 columns=['A','B'])
A

11/9/2018 DSWorkshop_Day_1

http://localhost:8888/notebooks/Downloads/DSWorkshop_Day_1.ipynb# 38/50

In [124]:

In [125]:

Notice that indices are aligned correctly irrespective of their order in the two objects, and indices in the result
are sorted. As was the case with Series , we can use the associated object's arithmetic method and pass any
desired fill_value to be used in place of missing entries. Here we'll fill with the mean of all values in A
(computed by first stacking the rows of A):

In [126]:

The following table lists Python operators and their equivalent Pandas object methods:

Python Operator Pandas Method(s)

+ add()

- sub() , subtract()

* mul() , multiply()

/ truediv() , div() , divide()

Out[124]:

A B C

0 7 8 1

1 5 9 8

2 9 4 3

Out[125]:

A B C

0 19.0 9.0 NaN

1 11.0 16.0 NaN

2 NaN NaN NaN

Out[126]:

A B C

0 19.0 9.0 7.5

1 11.0 16.0 14.5

2 15.5 10.5 9.5

B = pd.DataFrame(rng.randint(0, 10, (3, 3)),
 columns=['A','B','C'])
B

A+B

fill = A.stack().mean()
A.add(B, fill_value=fill)

11/9/2018 DSWorkshop_Day_1

http://localhost:8888/notebooks/Downloads/DSWorkshop_Day_1.ipynb# 39/50

Python Operator Pandas Method(s)

// floordiv()

% mod()

** pow()

Handling Missing Data

The difference between data found in many tutorials and data in the real world is that real-world data is rarely
clean and homogeneous. In particular, many interesting datasets will have some amount of data missing. To
make matters even more complicated, different data sources may indicate missing data in different ways.

In this section, we will discuss some general considerations for missing data, discuss how Pandas chooses to
represent it, and demonstrate some built-in Pandas tools for handling missing data in Python. Here and
throughout the book, we'll refer to missing data in general as null, NaN, or NA values.

Trade-Offs in Missing Data Conventions
There are a number of schemes that have been developed to indicate the presence of missing data in a table or
DataFrame. Generally, they revolve around one of two strategies: using a mask that globally indicates missing
values, or choosing a sentinel value that indicates a missing entry.

In the masking approach, the mask might be an entirely separate Boolean array, or it may involve appropriation
of one bit in the data representation to locally indicate the null status of a value.

In the sentinel approach, the sentinel value could be some data-specific convention, such as indicating a
missing integer value with -9999 or some rare bit pattern, or it could be a more global convention, such as
indicating a missing floating-point value with NaN (Not a Number), a special value which is part of the IEEE
floating-point specification.

None of these approaches is without trade-offs: use of a separate mask array requires allocation of an
additional Boolean array, which adds overhead in both storage and computation. A sentinel value reduces the
range of valid values that can be represented, and may require extra (often non-optimized) logic in CPU and
GPU arithmetic. Common special values like NaN are not available for all data types.

As in most cases where no universally optimal choice exists, different languages and systems use different
conventions. For example, the R language uses reserved bit patterns within each data type as sentinel values
indicating missing data, while the SciDB system uses an extra byte attached to every cell which indicates a NA
state.

Missing Data in Pandas
The way in which Pandas handles missing values is constrained by its reliance on the NumPy package, which
does not have a built-in notion of NA values for non-floating-point data types.

Pandas could have followed R's lead in specifying bit patterns for each individual data type to indicate nullness,
but this approach turns out to be rather unwieldy. While R contains four basic data types, NumPy supports far
more than this: for example, while R has a single integer type, NumPy supports fourteen basic integer types
once you account for available precisions, signedness, and endianness of the encoding. Reserving a specific
bit pattern in all available NumPy types would lead to an unwieldy amount of overhead in special-casing various

11/9/2018 DSWorkshop_Day_1

http://localhost:8888/notebooks/Downloads/DSWorkshop_Day_1.ipynb# 40/50

operations for various types, likely even requiring a new fork of the NumPy package. Further, for the smaller
data types (such as 8-bit integers), sacrificing a bit to use as a mask will significantly reduce the range of values
it can represent.

NumPy does have support for masked arrays – that is, arrays that have a separate Boolean mask array
attached for marking data as "good" or "bad." Pandas could have derived from this, but the overhead in both
storage, computation, and code maintenance makes that an unattractive choice.

With these constraints in mind, Pandas chose to use sentinels for missing data, and further chose to use two
already-existing Python null values: the special floating-point NaN value, and the Python None object. This
choice has some side effects, as we will see, but in practice ends up being a good compromise in most cases of
interest.

None : Pythonic missing data
The first sentinel value used by Pandas is None , a Python singleton object that is often used for missing data
in Python code. Because it is a Python object, None cannot be used in any arbitrary NumPy/Pandas array, but
only in arrays with data type 'object' (i.e., arrays of Python objects):

In [127]:

In [128]:

NaN : Missing numerical data
The other missing data representation, NaN (acronym for Not a Number), is different; it is a special floating-
point value recognized by all systems that use the standard IEEE floating-point representation:

Out[127]:

array([1, None, 3, 4], dtype=object)

TypeError Traceback (most recent call last)
<ipython-input-128-30a3fc8c6726> in <module>()
----> 1 vals1.sum()

~\Anaconda3\lib\site-packages\numpy\core_methods.py in _sum(a, axis, dtype,
 out, keepdims)
 30
 31 def _sum(a, axis=None, dtype=None, out=None, keepdims=False):
---> 32 return umr_sum(a, axis, dtype, out, keepdims)
 33
 34 def _prod(a, axis=None, dtype=None, out=None, keepdims=False):

TypeError: unsupported operand type(s) for +: 'int' and 'NoneType'

vals1 = np.array([1, None, 3, 4])
vals1

vals1.sum()

11/9/2018 DSWorkshop_Day_1

http://localhost:8888/notebooks/Downloads/DSWorkshop_Day_1.ipynb# 41/50

In []:

In []:

In []:

In []:

In []:

NaN and None in Pandas
NaN and None both have their place, and Pandas is built to handle the two of them nearly interchangeably,

converting between them where appropriate:

In []:

For types that don't have an available sentinel value, Pandas automatically type-casts when NA values are
present. For example, if we set a value in an integer array to np.nan, it will automatically be upcast to a floating-
point type to accommodate the NA:

In []:

In []:

Operating on Null Values
As we have seen, Pandas treats None and NaN as essentially interchangeable for indicating missing or null
values. To facilitate this convention, there are several useful methods for detecting, removing, and replacing null
values in Pandas data structures. They are:

isnull() : Generate a boolean mask indicating missing values
notnull() : Opposite of isnull()

vals2 = np.array([1, np.nan, 3, 4])
vals2.dtype

1 + np.nan

1*np.nan

vals2.sum(), vals2.min(), vals2.max()

np.nansum(vals2), np.nanmin(vals2), np.nanmax(vals2)

pd.Series([1, np.nan, 2, None])

x = pd.Series(range(2), dtype=int)
x

x[0] = None
x

11/9/2018 DSWorkshop_Day_1

http://localhost:8888/notebooks/Downloads/DSWorkshop_Day_1.ipynb# 42/50

dropna() : Return a filtered version of the data
fillna() : Return a copy of the data with missing values filled or imputed

Detecting null values
Pandas data structures have two useful methods for detecting null data: isnull() and notnull() . Either
one will return a Boolean mask over the data. For example:

In []:

In []:

Dropping null values
In addition to the masking used before, there are the convenience methods, dropna() (which removes NA
values) and fillna() (which fills in NA values). For a Series , the result is straightforward:

In []:

In []:

We cannot drop single values from a DataFrame ; we can only drop full rows or full columns. Depending on the
application, you might want one or the other, so dropna() gives a number of options for a DataFrame .

By default, dropna() will drop all rows in which any null value is present:

In []:

In []:

Filling null values
Sometimes rather than dropping NA values, you'd rather replace them with a valid value. This value might be a
single number like zero, or it might be some sort of imputation or interpolation from the good values. You could
do this in-place using the isnull() method as a mask, but because it is such a common operation Pandas
provides the fillna() method, which returns a copy of the array with the null values replaced.

data = pd.Series([1, np.nan, 'hello', None])

data[data.notnull()]

data.dropna()

df = pd.DataFrame([[1, np.nan, 2],
 [2, 3, 5],
 [np.nan, 4, 6]])
df

df.dropna()

df.dropna(axis='columns')

11/9/2018 DSWorkshop_Day_1

http://localhost:8888/notebooks/Downloads/DSWorkshop_Day_1.ipynb# 43/50

Consider the following Series :

In []:

In []:

In []:

In []:

In []:

Combining Datasets: Concat and Append
Some of the most interesting studies of data come from combining different data sources. These operations can
involve anything from very straightforward concatenation of two different datasets, to more complicated
database-style joins and merges that correctly handle any overlaps between the datasets. Series and
DataFrame s are built with this type of operation in mind, and Pandas includes functions and methods that

make this sort of data wrangling fast and straightforward.

Here we'll take a look at simple concatenation of Series and DataFrame s with the pd.concat function;
later we'll dive into more sophisticated in-memory merges and joins implemented in Pandas.

In []:

Simple Concatenation with pd.concat
Pandas has a function, pd.concat(), which has a similar syntax to np.concatenate but contains a number of
options that we'll discuss momentarily:

Signature in Pandas v0.18

data = pd.Series([1, np.nan, 2, None, 3], index=['a', 'b', 'c', 'd', 'e'])
data

data.fillna(0)

forward-fill
data.fillna(method='ffill')

back-fill
data.fillna(method='bfill')

df.fillna(method='ffill', axis=1)

def make_df(cols, ind):
 """Quickly make a DataFrame"""
 data = {c: [str(c) + str(i) for i in ind]
 for c in cols}
 return pd.DataFrame(data, ind)

example DataFrame
make_df('ABC', range(3))

11/9/2018 DSWorkshop_Day_1

http://localhost:8888/notebooks/Downloads/DSWorkshop_Day_1.ipynb# 44/50

pd.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False, keys=None, levels=None,
names=None, verify_integrity=False, copy=True) pd.concat() can be used for a simple concatenation of Series
or DataFrame objects, just as np.concatenate() can be used for simple concatenations of arrays:

In []:

By default, the concatenation takes place row-wise within the DataFrame (i.e., axis=0). Like
np.concatenate , pd.concat allows specification of an axis along which concatenation will take place.

Aggregation and Grouping

Simple Aggregation in Pandas
Earlier, we explored some of the data aggregations available for NumPy arrays. As with a one-dimensional
NumPy array, for a Pandas Series the aggregates return a single value:

In []:

In []:

For a DataFrame , by default the aggregates return results within each column:

In []:

In []:

By specifying the axis argument, you can instead aggregate within each row:

In []:

The following table summarizes some other built-in Pandas aggregations:

ser1 = pd.Series(['A', 'B', 'C'], index=[1, 2, 3])
ser2 = pd.Series(['D', 'E', 'F'], index=[4, 5, 6])
pd.concat([ser1, ser2])

rng = np.random.RandomState(42)
ser = pd.Series(rng.rand(5))
ser

print(ser.sum())
print(ser.mean())

df = pd.DataFrame({'A': rng.rand(5),
 'B': rng.rand(5)})
df

df.mean()

df.mean(axis='columns')

11/9/2018 DSWorkshop_Day_1

http://localhost:8888/notebooks/Downloads/DSWorkshop_Day_1.ipynb# 45/50

Aggregation DescriptionAggregation Description

count() Total number of items

first() , last() First and last item

mean() , median() Mean and median

min() , max() Minimum and maximum

std() , var() Standard deviation and variance

mad() Mean absolute deviation

prod() Product of all items

sum() Sum of all items

These are all methods of DataFrame and Series objects.

With this we have completed some useful methods of pandas. But that's not it... There's more to
pandas. For the extra content we encourage you to visit pandas documentation

Pandas online documentation (http://pandas.pydata.org/)

Matplotlib

Visualization with Matplotlib
We'll now take an in-depth look at the Matplotlib package for visualization in Python. Matplotlib is a multi-
platform data visualization library built on NumPy arrays, and designed to work with the broader SciPy stack. It
was conceived by John Hunter in 2002, originally as a patch to IPython for enabling interactive MATLAB-style
plotting via gnuplot from the IPython command line. IPython's creator, Fernando Perez, was at the time
scrambling to finish his PhD, and let John know he wouldn’t have time to review the patch for several months.
John took this as a cue to set out on his own, and the Matplotlib package was born, with version 0.1 released in
2003. It received an early boost when it was adopted as the plotting package of choice of the Space Telescope
Science Institute (the folks behind the Hubble Telescope), which financially supported Matplotlib’s development
and greatly expanded its capabilities.

One of Matplotlib’s most important features is its ability to play well with many operating systems and graphics
backends. Matplotlib supports dozens of backends and output types, which means you can count on it to work
regardless of which operating system you are using or which output format you wish. This cross-platform,
everything-to-everyone approach has been one of the great strengths of Matplotlib. It has led to a large user
base, which in turn has led to an active developer base and Matplotlib’s powerful tools and ubiquity within the
scientific Python world.

Importing Matplotlib
Just as we use the np shorthand for NumPy and the pd shorthand for Pandas, we will use some standard
shorthands for Matplotlib imports:

http://pandas.pydata.org/

11/9/2018 DSWorkshop_Day_1

http://localhost:8888/notebooks/Downloads/DSWorkshop_Day_1.ipynb# 46/50

In []:

Setting Styles
We will use the plt.style directive to choose appropriate aesthetic styles for our figures. Here we will set the
classic style, which ensures that the plots we create use the classic Matplotlib style:

In []:

Plotting from an IPython notebook

The IPython notebook is a browser-based interactive data analysis tool that can combine narrative, code,
graphics, HTML elements, and much more into a single executable document (see IPython: Beyond Normal
Python (01.00-IPython-Beyond-Normal-Python.ipynb)).

Plotting interactively within an IPython notebook can be done with the %matplotlib command, and works in a
similar way to the IPython shell. In the IPython notebook, you also have the option of embedding graphics
directly in the notebook, with two possible options:

%matplotlib notebook will lead to interactive plots embedded within the notebook
%matplotlib inline will lead to static images of your plot embedded in the notebook

For this book, we will generally opt for %matplotlib inline :

In []:

Saving Figures to File
One nice feature of Matplotlib is the ability to save figures in a wide variety of formats. Saving a figure can be
done using the savefig() command. For example, to save the previous figure as a PNG file, you can run
this:

In []:

In []:

import matplotlib as mpl
import matplotlib.pyplot as plt

plt.style.use('classic')

import numpy as np
x = np.linspace(0, 10, 100)

fig = plt.figure()
plt.plot(x, np.sin(x), '-')
plt.plot(x, np.cos(x), '--');

fig.savefig('my_figure.png')

from IPython.display import Image
Image('my_figure.png') #This confirms that the image has been saved!

http://localhost:8888/notebooks/Downloads/01.00-IPython-Beyond-Normal-Python.ipynb

11/9/2018 DSWorkshop_Day_1

http://localhost:8888/notebooks/Downloads/DSWorkshop_Day_1.ipynb# 47/50

Two Interfaces for the Price of One
A potentially confusing feature of Matplotlib is its dual interfaces: a convenient MATLAB-style state-based
interface, and a more powerful object-oriented interface. We'll quickly highlight the differences between the two
here.

MATLAB-style Interface

Matplotlib was originally written as a Python alternative for MATLAB users, and much of its syntax reflects that
fact. The MATLAB-style tools are contained in the pyplot (plt) interface. For example, the following code will
probably look quite familiar to MATLAB users:

In []:

Object-oriented interface

The object-oriented interface is available for these more complicated situations, and for when you want more
control over your figure. Rather than depending on some notion of an "active" figure or axes, in the object-
oriented interface the plotting functions are methods of explicit Figure and Axes objects. To re-create the
previous plot using this style of plotting, you might do the following:

In []:

In []:

In []:

plt.figure() # create a plot figure

create the first of two panels and set current axis
plt.subplot(2, 1, 1) # (rows, columns, panel number)
plt.plot(x, np.sin(x))

create the second panel and set current axis
plt.subplot(2, 1, 2)
plt.plot(x, np.cos(x));

First create a grid of plots
ax will be an array of two Axes objects
fig, ax = plt.subplots(2)

Call plot() method on the appropriate object
ax[0].plot(x, np.sin(x))
ax[1].plot(x, np.cos(x));

%matplotlib inline
plt.style.use('seaborn-whitegrid')

ax = plt.axes() # For a grid display

11/9/2018 DSWorkshop_Day_1

http://localhost:8888/notebooks/Downloads/DSWorkshop_Day_1.ipynb# 48/50

In []:

In []:

Adjusting the Plot: Line Colors and Styles
The first adjustment you might wish to make to a plot is to control the line colors and styles. The plt.plot()
function takes additional arguments that can be used to specify these. To adjust the color, you can use the
color keyword, which accepts a string argument representing virtually any imaginable color. The color can be

specified in a variety of ways:

In []:

Adjusting the Plot: Axes Limits
Matplotlib does a decent job of choosing default axes limits for your plot, but sometimes it's nice to have finer
control. The most basic way to adjust axis limits is to use the plt.xlim() and plt.ylim() methods:

In []:

In []:

In []:

Labeling Plots
As the last piece of this section, we'll briefly look at the labeling of plots: titles, axis labels, and simple legends.

ax = plt.axes()
x = np.linspace(0,10,1000)
ax.plot(x,np.sin(x))

plt.plot(x,np.sin(x))
plt.plot(x,np.cos(x))

plt.plot(x, np.sin(x - 0), color='blue') # specify color by name
plt.plot(x, np.sin(x - 1), color='g') # short color code (rgbcmyk)
plt.plot(x, np.sin(x - 2), color='0.75') # Grayscale between 0 and 1
plt.plot(x, np.sin(x - 3), color='#FFDD44') # Hex code (RRGGBB from 00 to FF)
plt.plot(x, np.sin(x - 4), color=(1.0,0.2,0.3)) # RGB tuple, values 0 to 1
plt.plot(x, np.sin(x - 5), color='chartreuse'); # all HTML color names supported

plt.plot(x, np.sin(x))

plt.xlim(-1, 11)
plt.ylim(-1.5, 1.5);

plt.plot(x, np.sin(x))
plt.axis('tight');

plt.plot(x, np.sin(x))
plt.axis('equal');

11/9/2018 DSWorkshop_Day_1

http://localhost:8888/notebooks/Downloads/DSWorkshop_Day_1.ipynb# 49/50

Titles and axis labels are the simplest such labels—there are methods that can be used to quickly set them:

In []:

When multiple lines are being shown within a single axes, it can be useful to create a plot legend that labels
each line type. Again, Matplotlib has a built-in way of quickly creating such a legend. It is done via the (you
guessed it) plt.legend() method. Though there are several valid ways of using this, I find it easiest to
specify the label of each line using the label keyword of the plot function:

In []:

Scatter Plots with plt.plot
In the previous section we looked at plt.plot / ax.plot to produce line plots. It turns out that this same
function can produce scatter plots as well:

In []:

Scatter Plots with plt.scatter
A second, more powerful method of creating scatter plots is the plt.scatter function, which can be used
very similarly to the plt.plot function:

In []:

The primary difference of plt.scatter from plt.plot is that it can be used to create scatter plots where
the properties of each individual point (size, face color, edge color, etc.) can be individually controlled or
mapped to data.

Let's show this by creating a random scatter plot with points of many colors and sizes. In order to better see the
overlapping results, we'll also use the alpha keyword to adjust the transparency level:

plt.plot(x, np.sin(x))
plt.title("A Sine Curve")
plt.xlabel("x")
plt.ylabel("sin(x)");

plt.plot(x, np.sin(x), '-g', label='sin(x)')
plt.plot(x, np.cos(x), ':b', label='cos(x)')
plt.axis('equal')

plt.legend();

x = np.linspace(0, 10, 30)
y = np.sin(x)
z = np.cos(x)
plt.plot(x, y, 'o', color='red')
plt.plot(x, z, 'x', color='blue')

plt.scatter(x, y, marker='o')

11/9/2018 DSWorkshop_Day_1

http://localhost:8888/notebooks/Downloads/DSWorkshop_Day_1.ipynb# 50/50

In []:

For more cmap types visit the following link: https://matplotlib.org/examples/color/colormaps_reference.html
(https://matplotlib.org/examples/color/colormaps_reference.html)

plot Versus scatter : A Note on Efficiency
Aside from the different features available in plt.plot and plt.scatter , why might you choose to use one
over the other? While it doesn't matter as much for small amounts of data, as datasets get larger than a few
thousand points, plt.plot can be noticeably more efficient than plt.scatter . The reason is that
plt.scatter has the capability to render a different size and/or color for each point, so the renderer must do

the extra work of constructing each point individually. In plt.plot , on the other hand, the points are always
essentially clones of each other, so the work of determining the appearance of the points is done only once for
the entire set of data. For large datasets, the difference between these two can lead to vastly different
performance, and for this reason, plt.plot should be preferred over plt.scatter for large datasets.

Histograms, Binnings, and Density
A simple histogram can be a great first step in understanding a dataset. Earlier, we saw a preview of
Matplotlib's histogram function which creates a basic histogram in one line, once the normal boiler-plate imports
are done:

In []:

In []:

In []:

rng = np.random.RandomState(0)
x = rng.randn(100)
y = rng.randn(100)
colors = rng.rand(100)
sizes = 1000 * rng.rand(100)

plt.scatter(x, y, c=colors, s=sizes, alpha=0.3,
 cmap='winter')
plt.colorbar(); # show color scale

data = np.random.randn(1000)
plt.hist(data)

plt.hist(data, bins=30, normed=True, alpha=0.5,
 histtype='stepfilled', color='steelblue',
 edgecolor='black');

https://matplotlib.org/examples/color/colormaps_reference.html

